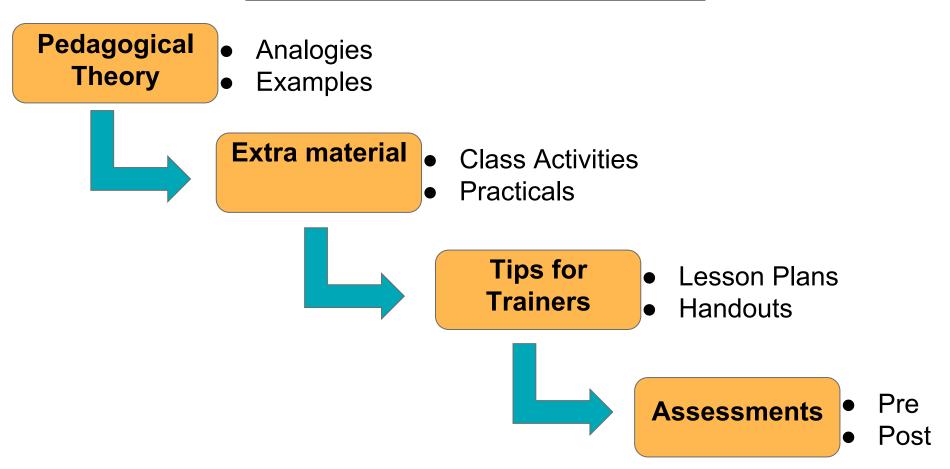
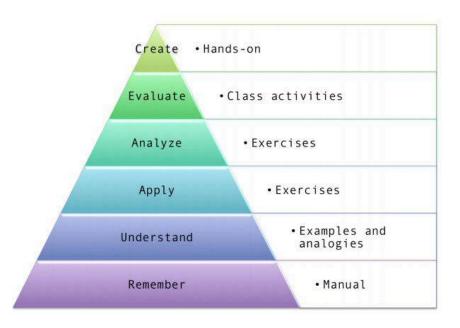
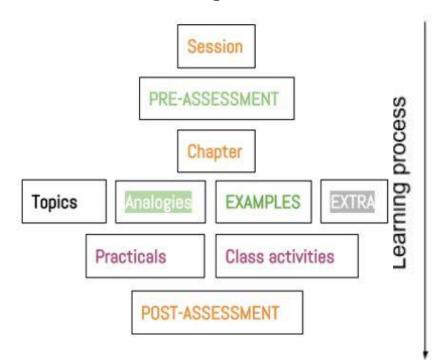

Train of Trainers (ToT) Manual

info@ledsafari.com Lausanne, Switzerlan

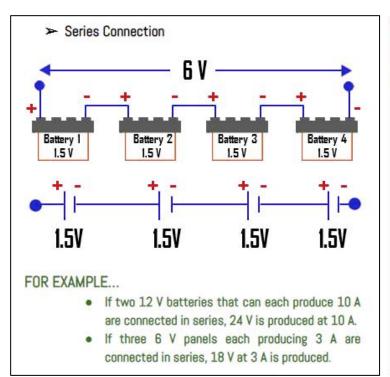

Why is LEDsafari manual different?

What am I going to find there?

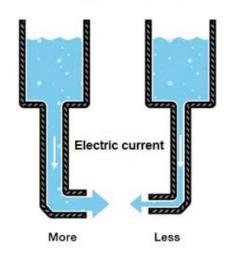



Pedagogical Theory

→ Based in the Bloom's Taxonomy theory of learning:


→ The training session:

Pedagogical Theory



→ Examples:

ANALOGY !!!

When water moves through a pipe, it is said to flow. The volume of water that flows through a pipe in one unit of time is called the flow rate. When electricity moves through a wire, it is sometimes said to flow like water but it is usually said to have a current rather than a flow rate.

Extra material

→ Class Activities: Games and exercises to motivate the trainees and fix the knowledge

IT'S TIME TO PLAY!

→ Example:

Chapter 11: Operation & Maintenance Topic: Battery maintenance Game: Save the battery Material: cards Time: 10-15 min → Before starting: Print out the cards Description: Each trainee picks a card from the deck Each card contains either a CAUSE (C), or a PROBLEM (P), or a SOLUTION (S) Without showing their cards, the trainees have to form triplets: If a trainee has a C card, will look for his corresponding P and S If a trainee has a P card, he will look for a C and a S.

SOLUTION CARD:

ADD DISTILLED WATER

CAUSE CARD:

Operation at High Temperatures

SOLUTION CARD:

Clean with abrasive paper & prevent

PROBLEM CARD:

STRATIFICATION

PROBLEM CARD:

Electricity leakage

CAUSE CARD:

Rust & corrosion at the terminals

Extra material

- → Practicals: Hands-on activities to engage the trainees in real-life situations
- → Example:

IT'S TIME TO USE YOUR OWN HANDS !!!

Chapter 1: Basics of Electricity

1.1 Voltage in PV panels

Learning Outcomes	Measurement of electrical parameters		
Required equipment	Photovoltaic modules and multimeters.		
Time allocation	20 minutes		
Number of people	2 people		

Advices for Trainers

If they need help, assist them during the measurements.

Activity

- → Give a small PV module and a multimeter to each pair.
- → Ask them to measure the voltage between the two terminals.
- → Ask them to change the light condition on the panel surface by creating shadows or walking in the classroom.

Tips for Trainers

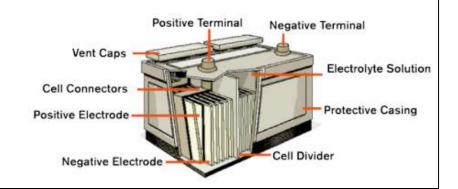
→ <u>Lesson Plans:</u> Suggestions for lesson plans to support the trainer

→ Example:

Time	Content	Learning outcome	Method	Material	
8:00-8:30	Breakfast				
8:30-10:30	Review of previous class	//Review//	Dialogue with class / Quiz /	Post it, pen, papers	
	Photovoltaic technology	Explain how light is converted into energy	Frontal class	Whiteboard, Markers, hand-outs	
		Explain relationship between solar cell, module and array	Frontal class	Whiteboard, Markers, hand-outs	
		Explain the basic structure of a PV module	Frontal class	Whiteboard, Markers, hand-outs	
		Classify PV modules based on technology	Frontal class	Whiteboard, Markers, hand-outs	
			Demonstration of the different type of modules	Different type of modules	
		Describe the characteristics of an IV curve	Frontal class	Whiteboard, Markers, hand-outs	
			Activity/Game: "Who is the more efficient"	Datasheets of different PV panels	
10:30 - 11:00	Break				

Tips for Trainers

→ **Handouts:** Information provided in print-ready documents to facilitate the learning


process

Summary: Chapter 5

BATTERY

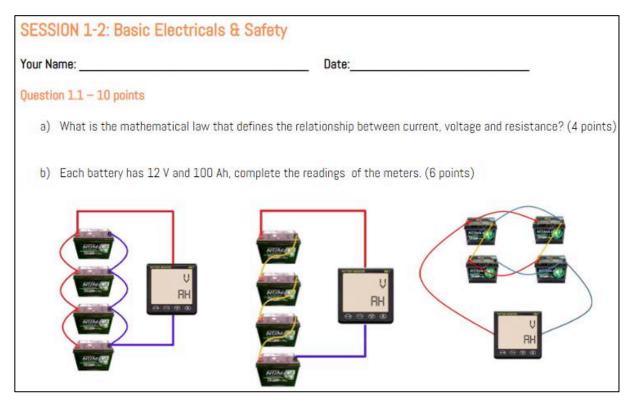
- → Features:
 - Stores electricity produced by a solar panel for later usage.
 - One of the most expensive parts of a PV system.
 - Easily damaged by poor maintenance or incorrect usage.
 - · Short lifespan compared to other components.
- → Lead-acid battery structure:

Assessments

- → Pre-Assessments: Evaluate trainees' knowledge before the training
- **→** Examples:

Previous practical knowledge

1 Torrodo practical knowledge						
Your Name:		Date:				
Self assessr	ment					
1. How fa	amiliar are you with the h	pasics concepts of electricity?				
(Voltage, curre	ent, resistance, energy, v	vork, power, Ohm's law)				
а.	I don't know what thes	se words mean				
b.	I have already studied	about it a long time ago				
C.	I use some of them in	my daily life but I cannot to explain				
d.	I can teach someone a	bout these concepts				
a. b. c.	I don't know what thes I have already studied I use some of them in I	se words mean about it a long time ago my daily life but I cannot to expla				


SES	SION 3: Introduction to Renewable Energy
L. Do	ou still remember?
A)	Solar energy can only be harvested in the form of radiant energy True False
B)	Renewable energy and clean energy means exactly the same thing True False
C)	Nuclear energy is a form of Conventional energy Renewable energy Clean energy
D)	List all the renewable forms of energy that you can remember

Assessments

→ Post-Assessments: Evaluate progress and knowledge acquired from the training

→ Example:

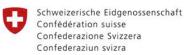
THANK YOU!

LEDSafari

PARTNERS & AWARDS

PHILIPS

IIII ENTERPRISE FORUM


ARAB STARTUP

COMPETITION

Empowering Entrepreneurs

Get in touch with us:

www.ledsafari.com info@ledsafari.com